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In this study, the non-linear effect of contactless bubble-bubble interactions in inertial micro-pumps is characterized

via reduced parameter one-dimensional and three-dimensional computational fluid dynamics (3D CFD) modeling. A

one-dimensional pump model is developed to account for contactless bubble-bubble interactions, and the accuracy

of the developed one-dimensional model is assessed via commercial volume of fluid CFD software, FLOW-3D. The

FLOW-3D CFD model is validated against experimental bubble dynamics images as well as experimental pump data.

Pre-collapse and post-collapse bubble and flow dynamics for two resistors in a channel have been successfully explained

by the modified one-dimensional model. The net pumping effect design space is characterized as a function of resistor

placement and firing time delay. The one-dimensional model accurately predicts cumulative flow for simultaneous

resistor firing with inner-channel resistor placements (0.2L < x < 0.8L where L is the channel length) as well as delayed

resistor firing with inner-channel resistor placements when the time delay is greater than the time required for the vapor

bubble to fill the channel cross-section. In general, one-dimensional model accuracy suffers at near-reservoir resistor

placements and short time delays which we propose is a result of 3D bubble-reservoir interactions and transverse

bubble growth interactions respectively that are not captured by the one-dimensional model. We find that the one-

dimensional model accuracy improves for smaller channel heights. We envision the developed one-dimensional model

as a first-order rapid design tool for inertial pump based microfluidic systems operating in the contactless bubble-bubble

interaction non-linear regime.

NOMENCLATURE

p1b,2b [Pa] – bulk reservoir pressure

p1,2 [Pa] – pressure at channel entrance region

po [Pa] – atmospheric pressure

pv [Pa] – bubble pressure

pvr [Pa] – vapor saturation pressure at room temperature

pc [Pa] – post-collapse pressure spike

A [m2] – channel cross-sectional area

xo [m] – resistor placement

qo [kg*m/s] – bubble strength

qc [k5*m/s] – post-collapse momentum impulse

x1,2,3,4 [m] – location of liquid/vapor interface

ρ [kg/m3] – fluid density

κ [Pa*s] – viscous dissipation coefficient

L [m] – channel length

m [{0,1}]– discrete model pressure model select parameter

pc [Pa] – post-collapse pressure

τ [s] – resistor firing offset

tc [s] – time at bubble collapse

xc [m] – location of bubble collapse

vc [m/s] – velocity at bubble collapse

I. INTRODUCTION

In the last few decades, lab-on-a-chip devices have utilized

a variety of passive and active flow control systems to

a)Electronic mail: brandon.hayes@colorado.edu
b)Electronic mail: gregory.whiting@colorado.edu
c)Electronic mail: maccurdy@colorado.edu

move fluid through microchannels such as capillary action1,

magneto-hydrodynamics2, electrophoresis3, electroosmosis4,

mechanical peristalic motion5, centrifugal forces6, hydro-

static forces7, and most commonly external syringe pumps8.

While the microfluidics devices themselves are small, the size

of the flow control system is generally significantly larger

due to external fluidic pumps or power supplies giving rise

to the current adage of: "lab-on-a-chip" or "chip-in-a-lab."

Successful commercialization of microfluidic devices require

systems integration, scalability, and standardization of all

microfluidic components including the flow control system9.

Thus, there is a need for an integrated, scalable, and standard-

ized microfluidic pump source.

Inertial micro-pumps are an emerging micro-pump tech-

nology able to be integrated directly into microfluidic

channels, have no moving parts, are scalable, and leverage

standard semiconductor mass fabrication techniques10. Un-

like other pump sources, inertial micro-pumps can be thought

of as a more general electro-mechanical actuator. Inertial

micro-pumps can be used as a microfluidic pump source but

also can be used for other microfluidic applications such as

cell lysis11 and fluid mixing12. This application versatility

and the ability to directly integrate inertial micro-pumps

into microchannels using existing semiconductor mass

fabrication techniques holds great promise for microfluidic

commercialization. Inertial micro-pumps were first theorized

and demonstrated by Prosperetti et al.13,14 in 2000 and

commercialized by Hewlett-Packard10 in the 2010’s. These

pumps consist of a thermal inkjet (TIJ) micro-resistor that

locally boils liquid in a microchannel generating a vapor

bubble which performs mechanical work. A voltage pulse of

around 1-10 µs is applied generating a heat flux in excess of
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500 W/mm2 which causes rapid bubble expansion15. Bubble

collapse occurs approximately 10 µs later (in a 22 x 17 µm2

channel) as the vapor bubble loses energy due to volume

expansion and thermal losses16. When placed asymmetrically

in a microchannel with reservoirs at either end, momentum

imbalances upon bubble collapse result in a net fluid pumping

effect10,13. In addition to simply pumping fluid, inertial

pumps were successfully used as micro-mixers12, fluid jets17,

and fluid sorters/routers18 demonstrating the wide application

of this technology.

Prosperetti et al. first developed a reduced parameter

one-dimensional model of the pumping effect of a single

resistor in a channel by considering a momentum balance

at the liquid/vapor interface accounting for surface tension,

pressure, and viscous forces13. Later, Kornilovitch et al.

described the pumping dynamics of a single resistor in a

channel in greater detail using a similar reduced parameter

one-dimensional model with emphasis on pre-collapse and

post-collapse pumping dynamics19. Current theoretical and

experimental work in inertial pump technology primarily

focuses on linear operating regimes; that is, when both

bubble dynamics and fluid flow are fully extinguished before

subsequent resistor firings. Little work to date has studied

the non-linear regime when multiple bubble events overlap

in time but do not physically contact (henceforth called

contactless bubble-bubble interactions). It is to be noted that

this study deals exclusively with bubbles that interact at a

distance in which one bubble modifies the liquid environment

affecting another bubble but the bubbles do not occupy the

same physical space. In a realistic lab-on-a-chip device,

a microfluidic circuit may consist of thousands of inertial

pumps in which contactless bubble-bubble interactions are

unavoidable or even desirable. Thus, it is important to

understand the non-linear contactless bubble-bubble interac-

tion regime of inertial pumps. Yuan et al. first proposed a

theoretical one-dimensional model accounting for contactless

bubble-bubble interactions in a three resistor system for three

example resistor placement locations but did not validate the

model’s accuracy nor map the potential system design space20

and Zou et al. experimentally characterized laser induced

contactless bubble-bubble interactions and net flow in a two

bubble system but in much larger circular channels on the

order of d = 5 mm21. In this study, we extensively model

bubble and flow physics during contactless bubble-bubble

interactions in realistic two inertial pump systems via both

one-dimensional and 3D CFD modeling. We validate our

one-dimensional model using commercial volume of fluid

CFD software, FLOW-3D, and showcase full 3D bubble

and flow dynamics not captured by previous and current

one-dimensional models. Lastly, we discuss the developed

one-dimensional model’s accuracy and limitations with

emphasis on its predictive capabilities for future application

as a rapid design tool for inertial pump based microfluidic

systems operating in the contactless bubble-bubble interaction

non-linear regime. To our knowledge, this is the first work

to date that characterizes the inertial pump design space for

contactless bubble-bubble interactions as well as validates

the accuracy and predictive capability of a one-dimensional

model for contactless bubble-bubble interactions via 3D CFD.

Inertial micro-pumps hold the potential to be to microfluidics

what the transistor is to modern electronics. Cascades of

thousands of inertial micro-pumps in a microfluidic circuit

may one day be commonplace for commercial microfluidic

devices. Interaction between bubbles will likely be unavoid-

able or even desirable in such a system. As such, this work

provides the framework to understand contactless bubble-

bubble interactions as well as formulate a one-dimensional

model to quickly and accurately describe system performance

without computationally expensive full 3D CFD modeling.

We envision the developed one-dimensional model in this

study as a future tool to aid microfluidic designers using

inertial pumps in the contactless bubble-bubble interaction

non-linear regime.

II. INERTIAL PUMP PHYSICS AND THE 1D PUMP
MODEL

Here we present the 1D pump model19 described by Ko-

rnilovitch et al. which we build upon in this paper to account

for contactless bubble-bubble interactions. Primary model as-

sumptions are as follow:

1. Incompressible fluid

2. Infinite speed of sound giving rise to instantaneous

pressure wave propagation

3. Surface tension forces negligible compared to viscous

and pressure forces

4. Bubble nucleation physics reduced to an instantaneous

pressure impulse, pv

5. 3D bubble and flow physics reduced to tracking 1D liq-

uid/vapor interfaces.

6. Bubble instantaneously occupies the channel cross-

section when formed.

Consider the geometry of figure 1a. A microchannel of cross-

sectional area A is connected to two fluid reservoir with initial

pressure p1b,2b. A thin film resistor with dimensions w x ℓ is

placed at xo. The entire channel length is L. A voltage pulse

lasting 1-10 µs creates a heat flux of around 500 W/mm2 caus-

ing rapid vaporization15. Local boiling at the resistor’s surface

generates a high pressure vapor bubble of pressure pv, figure

1b, that pushes fluid out of the channel. pv can be modeled as

pv(t) =
qo

A
δ (t)+ pvr (1)

where qo is the mechanical momentum imparted to both

fluid columns denoted as the bubble strength (on the order

of 10−10 kg*m/s), A is the cross-section channel area, and

pvr is the vapor saturation pressure at room temperature.

Here, the delta function accounts for the initial momentum

kick by the high pressure vapor bubble at t = 0 (figure 1b)
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1.jpg

FIG. 1. Schematic of the Inertial Pump 1D Model. (a) Depicts a mi-

crochannel with two fluid reservoirs of pressure p1b,2b and channel

inlet/outlet pressure p1,2. At its simplest case, p1b,2b = po and the

fluid starts at rest. (b-e) describes the pumping process. (b) Local

boiling generates a high pressure vapor bubble, pv, that pushes fluid

out of the channel. (c) pv decreases due to bubble volumetric expan-

sion and heat transfer and rapidly drops below atmospheric pressure

to pvr. Bubble expansion is driven by inertia until the bubble reaches

its maximum expansion volume. (d) The short arm bubble (to the

left of the resistor) reverses direction while the long arm bubble (to

the right of the resistor) continues expanding to the right. (e) The

short arm bubble accelerates faster than the long arm bubble result-

ing in a momentum imbalance that drives fluid flow upon collapse.

The point of collapse is offset from the location of bubble expansion

giving rise to the primary pumping effect. The net momentum im-

parted to the fluid generates the secondary pumping effect which is

eventually brought to rest by viscous dissipation.

after which volumetric expansion and heat transfer causes the

bubble pressure to quickly drop below atmospheric pressure

(po) and reach the saturation vapor pressure at ambient

temperature (pvr ≈ 0.3po)19. Additionally, we note that

the bubble strength qo is a fitting parameter to reflect the

initial momentum kick by the high pressure vapor bubble.

For a channel cross-section of 22 x 17 µm2, the bubble

expansion and collapse process takes around 10 µs after

which flow is brought to rest by viscous forces in roughly

50 µs10. Bubble expansion is driven by inertia until the

bubble reaches its maximum expansion volume. The short

arm bubble then reverses direction while the long arm bubble

continues expanding to the right, figure 1d. The short arm

bubble accelerates faster than the long arm bubble creating

a momentum imbalance upon collapse that drives fluid flow,

figure 1e. The point of bubble collapse is offset from its point

of expansion resulting in the primary pumping effect. The net

momentum imparted to the fluid upon collapse results in the

secondary pumping effect which is eventually brought to rest

by viscous dissipation10.

Kornilovitch et al. analyzed the momentum gained/lost

during the bubble expansion and collapse cycle to de-

rive the following 1D model which was validated against

experimental data for non-overlapping firing pulses19.

Aρx1ẍ1 +κx1ẋ1 = (p1 − pv)A (2)

Aρ(L− x2)ẍ2 +κ(L− x2)ẋ2 = (pv − p2)A (3)

where A is the cross-sectional channel area, ρ is the fluid den-

sity, κ is the characteristic strength of the viscous force19 de-

rived in Appendix A (approximately 0.0184 Pa*s for a 17 x

22 µm2 rectangular channel cross-section), L is the channel

length, p1 and p2 are the pressures at the channel inlet/outlet,

and pv is the bubble pressure. Pressures immediately outside

the channel p1,2 are different from bulk reservoir pressures

p1b,2b due to source flow from the reservoir. Prosperetti et al.

and Kornilovitch et al. accounted for the pressure drop due

to source flow by a Bernoulli term added to the bulk reser-

voir pressure which we adopt in this paper where m = {0,1}
is a discrete parameter to select between pressure models and

H(x) is the Heaviside function13,19.

p1 = p1b −
m

2
ρ ẋ1

2H(ẋ1) (4)

p2 = p2b −
m

2
ρ ẋ2

2H(−ẋ2) (5)

In a simple 1 bubble and 1 channel network, initial posi-

tions start at the resistor center and initial velocities are found

through momentum balances where x1 and x2 define the liq-

uid/vapor interface locations as depicted in figure 1.

Short Arm Long Arm

x1(0) = xo x2(0) = xo

ẋ1(0) =− qo

ρAxo
ẋ2(0) =

qo

ρA(L−xo)

(6)

However, in more complex networks, finding initial condi-

tions may be non-trivial. Here, we describe a general pro-

cedure to identity consistent initial conditions for such non-

trivial systems. At t = 0, velocities ẋ1 and ẋ2 are discontinu-

ous. That is,

lim
t→0−

ẋ1 = v(1,0−) (7)

lim
t→0+

ẋ1 = v(1,0+) (8)

lim
t→0−

ẋ2 = v(2,0−) (9)

lim
t→0+

ẋ2 = v(2,0+) (10)
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where t = 0− refers to the time immediately before bubble

actuation and t = 0+ refers to the time immediately after bub-

ble actuation. In this case, v(1,0−) = 0 and v(2,0−) = 0 since

the fluid starts at rest. Integrating equations 2 and 3 infinites-

imally about t = 0 results in only the contribution from delta-

like components. Namely, from integration of pv, ẍ1, and ẍ2.

ρxov1,0+ =−
qo

A
(11)

ρ(L− xo)v2,0+ =
qo

A
(12)

Thus, we arrive at a statement of conservation of momentum

which yields the same initial conditions described by Ko-

rnilovitch et al.

At collapse t = tc, the bubble is at position x = xc with

short and long arm velocities v(1,2)c. Here, we use the

notation v(1,2)c to refer to the velocity of interface 1 and 2

respectively at the time of collapse. The end pre-collapse

positions and velocities define the starting initial conditions

of the post-collapse phase. After the bubble collapse, the

dynamic equations become

AρLẍ+κLẋ = (p1 − p2)A (13)

where a single interface x now models the fluid motion. From

conservation of momentum, Kornilovitch et al. showed the

initial conditions for the post-collapse bubble regime as fol-

lows.

Post −Collapse

x(tc) = xc

ẋ(tc) =
ρAxcv1c+ρA(L−xc)v2c

ρAL

(14)

Again, we present a generalized approach to finding the post-

collapse initial conditions. Similar to the initial momentum

impulse qo during bubble expansion, the collapse phase can be

represented as a momentum impulse qc provided by momen-

tum imbalance at collapse. As such, post-collapse is driven by

a pressure spike pc at t = tc which is the secondary pumping

effect.

pc(t) =
qc

A
δ (t − tc) (15)

Thus, the dynamic equation (equation 13) is modified to ac-

count for the added collapse pressure impulse.

AρLẍ+κLẋ = (pc + p1 − p2)A (16)

Integrating infinitesimally about t = tc and applying conserva-

tion of momentum gives the following initial conditions.

ρLvt+c
−ρLt−c

vt−c
=

qc

A
(17)

ρAxcv1c +ρA(L− xc)v2c = ρALvt+c
(18)

where ρLt−c
vt−c

= 0 since the combined fluid column did not

exist before collapse and can be thought of as having fluid

length Lt−c
= 0. Quantities qc and vt+c

are unknown variables

which are found through solving the system of equations gen-

erated by infinitesimal integration of the dynamic equations

(equation 17) and applying conservation of mass to the entire

system (equation 18). In this simple 1 bubble and 1 channel

network, vt+c
matches with initial post-collapse velocity given

by Kornilovitch et al. in equation 14 and qc reflects the mo-

mentum imparted to the fluid column upon collapse.

III. FLOW-3D COMPUTATIONAL MODEL

A. Model Description

Thermal bubble nucleation and collapse can be represented

mathematically as a complex system of coupled multi-physics

equations which cannot be analytically solved. High surface

heat flux, fluid-solid heat transfer coupling, rapid vapor

interface expansion, surface tension effects, and small time

timescales (on the order of µs’s), add significant complexity

to modeling the thermal bubble nucleation and expansion.

The governing equations for mass, momentum, and en-

ergy transport for an incompressible fluid with constant

material properties are described by the Navier-Stokes

equations:

∇ ·V = 0 (19)

ρ
DV

Dt
=−∇P+µ∇2

V+ρF (20)

ρcp

DT

Dt
= k∇2T +q′′′gen (21)

where V is the velocity field, ρ is the fluid density, P is the

scalar pressure field, µ is the fluid viscosity, F is an external

body force, cp is the heat capacity at constant pressure, k is

the thermal conductivity, T is the temperature, and q′′′gen is the

volumetric heat generation. In this study, FLOW-3D has been

used to discretize and numerically solve the Navier-Stokes

equations via the VOF method. Liquid/vapor interfaces are

determined following the approach developed by Hirt and

Nichols22. Fractional Area/Volume Obstacle Representation

(FAVOR) allows complex mesh generation taking into ac-

count both solids and liquids within a domain. Homogeneous

bubble nucleation is modeled by approximating the vapor

pressure inside the bubble as a function of bubble temperature

through the Clausius-Clapeyron equation23. Fluid heats

to the superheat temperature upon which explosive bubble

nucleation occurs24. The mass flux due to evaporation / con-

densation is modeled using the kinetic theory described by

Theofanous et.al25. Thus, the Clausius-Clapeyron equation

maps from bubble temperature to pressure, and the kinetic

theory mass flux maps mass transport from liquid to vapor

phases. During bubble nucleation, energy is lost due to (a)

overcoming surface tension forces during nucleation, (b)

bubble volumetric expansion, and (c) heat transfer between

the vapor bubble and surrounding fluid. This yields a rapid

pressure drop bringing Pvap < Po causing bubble collapse24.

In this model, we simplify full transient heat transfer

between the resistor and surrounding fluid by assuming a

prescribed time dependent resistor temperature, TR(t). This
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2.jpg

FIG. 2. FLOW-3D CFD Validation. FLOW-3D bubble dynamics compared to experimental data at discrete time steps. Experimental images

adapted from Govyadinov et al., “Single-pulse dynamics and flow rates of inertial micropumps”, Microfluidics and Nanofluidics, 20, 73,

2016; licensed under a Creative Commons Attribution (CC BY) license16. The U-shaped channel geometry was matched with that used for

experimental bubble dynamics data16 where L = 403 µm, W = 22 µm, and H = 17 µm. No-slip boundary conditions were applied to all

boundaries except the bottom of the reservoir in which a static pressure boundary condition was applied.

eliminates the need for a detailed material description of resis-

tor film stacks which is proprietary in thermal micro-bubble

systems and not available in the experimental literature data

used for model validation. Using this approach, the film stack

can be reduced to an effective single film of thickness, tr. We

approximate the time dependent resistor temperature as the

following rectangle function.

TR(t) =







0 t < ton

TR,max ton ≤ t ≤ τ
0 t > τ

(22)

Heating occurs during a ton = 1.5 µs rectangular firing pulse

with TR,max = 873.15 K. TR(t) is a reasonable approximation

as, in reality, Joule heating yields a sharp exponential tem-

perature rise which is reflected by the much faster tempera-

ture rise than other timescales of the TR(t) rectangle function.

Thus, full transient heat transfer can be greatly simplified. We

used 300 nm grid cells at the resistor surface to properly re-

solve bubble nucleation dynamics. We demonstrate in the next

section that these model approximations yielded simulated net

flows that are in excellent agreement with experimental data.

B. Model Validation

Figure 2 compares experimental bubble dynamics to simula-

tion results in FLOW-3D at discrete time steps. FLOW-3D

bubble dynamics were in good agreement with experimental

images. To further validate simulation results, the net cumu-

lative flow (meaning volume displaced) was extracted from

FLOW-3D models and was in excellent agreement with ex-

perimental data in figure 3. To assess the mesh dependency of

the FLOW-3D models, we performed a mesh analysis study

for 0.50, 0.75, 1, and 1.5 µm grid cell resolutions. Figure 4

shows mesh convergence at 0.50 and 0.75 µm grid cell res-

olutions. 1 µm grid cells were utilized in this study to best

balance accuracy and computational time.

IV. SINGLE CHANNEL CONTACTLESS BUBBLE-BUBBLE
INTERACTION 1D MODEL DEVELOPMENT

Here, we further develop the one-dimensional pump model to

account for contactless bubble-bubble interaction dynamics.

We decompose the model into two main stages as shown

in figure 5: (1) pre-collapse which accounts for bubble

expansion and collapse and (2) post-collapse which accounts

for fluid motion due to bubble collapse. During pre-collapse,
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3.jpg

FIG. 3. Cumulative Flow Model Validation. Illustrates the cumula-

tive volume displaced per pulse of FLOW-3D model data in compar-

ison to experimental data16 (republished with permission of the au-

thors) and 1D model fit. A τ = 1.5 µs firing pulse was used through-

out this study. L = 403 µm, w = 22 µm, h = 17 µm, µ = 8.9 × 10−4

Pa*s, and ρ = 1000 kg/m3. 1D model fit parameters were qo = 3.52

× 10−10 kg*m/s and xo = 73 µm.

4.jpg

FIG. 4. Mesh Analysis. Mesh analysis study using 0.50, 0.75, 1, and

1.5 µm grid cell resolutions showing convergence to experimental

data16 (republished with permission of the authors).

the boundary conditions for simultaneous resistor firing (τ =

0) are slightly different than in the case of delayed resistor

firing (τ > 0). During post-collapse, we develop the most

general model by calculating which bubble collapses first and

applying the required dynamic equations.

Pre-Collapse. τ = 0. Simultaneous Firing.

Consider figure 5a-c. The two resistors are assumed to

have the same dimensions and firing parameters such that the

resulting bubble strengths are the same, q1 = q2 = qo. In the

general case, resistor dimensions and firing parameters can

vary resulting in distinct bubble strengths for each resistor.

Resistor 1 fires at t = 0 and resistor 2 fires at t = τ resulting in

bubble pressures p1v and p2v.

p1v =
qo

A
δ (t)+ pvr (23)

p2v =
qo

A
δ (t − τ)+ pvr (24)

We first analyze the case when τ = 0 and the resistors fire si-

multaneously. The second vapor bubble introduces two addi-

tional interfaces to the dynamic equations, x3 and x4. Apply-

ing a momentum balance gives the following dynamic equa-

tions for pre-collapse.

(p1 − p1v)A−κx1ẋ1 = ρAx1ẍ1 (25)

(p1v − p2v)A−κ(x3 − x2)ẋ2 = ρA(x3 − x2)ẍ2 (26)

(p1v − p2v)A−κ(x3 − x2)ẋ3 = ρA(x3 − x2)ẍ3 (27)

(p2v − p2)A−κ(L− x4)ẋ4 = ρA(L− x4)ẍ4 (28)

Initial velocities are then found through infinitesimal integra-

tion about t = 0.

−qo = ρAxo,1v1,0+ (29)

v2,0+ = 0 (30)

v3,0+ = 0 (31)

qo = ρA(L− xo,2)v4,0+ (32)

Initial positions are x1(0) = x2(0) = xo,1 and x3(0) = x4(0) =

xo,2. Notice that firing at τ = 0 with equal strength resistors in

a fluid at rest results in no internal flow during pre-collapse

as v2,0+ = v3,0+ = 0 regardless of resistor placement in the

channel. It should also be noted that the one-dimensional

model assumption of infinite speed of sound gives rise to

instantaneous pressure wave propagation in the model. In

a microfluidic channel of L = 500 µm and speed of sound

in water of c = 1480 m/s, the pressure wave propagation

delay would be approximately 300 ns which we define as

instantaneous firing. Thus, we define delayed resistor firing

as a time delay greater than 300 ns.

Pre-Collapse. τ > 0. Delayed Firing.

Now, consider the pre-collapse case where firing of re-

sistor 2 is delayed by some τ where τ > 0. Unlike previously,

fluid is moving at all points in the channel when resistor 2

fires. Pre-collapse is then modeled by (a) bubble 1 expansion

and (b) bubble 2 expansion. Dynamic equations and initial

conditions for stage 1 are the same as the single bubble case

in equations 2-3 and 11-12. During bubble 2 expansion, the

dynamic equations now contain all 4 liquid/vapor interfaces

as denoted in equations 25-28. Infinitesimal integration about

t = τ gives the initial velocities for the system taking into

account non-stationary flow due to bubble 1 expansion.

v1,τ+ = v1,τ− (33)

−qo = ρA(xo,2 − x2,τ−)(v2,τ+ − v2,τ−) (34)

−qo = ρA(xo,2 − x2,τ−)(v3,τ+ − v3,τ−) (35)

qo = ρA(L− xo,2)(v4,τ+ − v4,τ−) (36)

We denote the velocities at the end of stage 1 as v(1−4),τ−

where v(3−4),τ− = v2,τ− . Initial positions are x(1,2),τ+ =

x(1,2),τ− and x3,4 = xo,2 which is the resistor center point.

Post-Collapse. Condition I. Bubble 1 Collapses First.

The first bubble to collapse depends on resistor place-

ments and firing time delays. As such, there exists two
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Modeling of Contactless Bubble-Bubble Interactions in Microchannels with Integrated Inertial Pumps 7

5.jpg

FIG. 5. Contactless Bubble-bubble Interaction Model Development. Describes the model layout consisting of (a-c) stage 1, pre-collapse and

(d-g) stage 2, post-collapse. The pre-collapse stage is sub-divided to account for simultaneous resistor firing (τ = 0) and delayed resistor firing

(τ > 0). The post-collapse stage is sub-divided to account for the most general case where the model calculates which bubble collapses first

and applies the correct dynamic equations. t = tc,1 and t = tc,2 refer to the time of collapse for bubble 1 and 2 respectively.

conditions when modeling post-collapse: (I) bubble 1 col-

lapses first or (II) bubble 2 collapses first. Consider condition

I depicted in figure 5d-e. Bubble 1 collapses at t = tc,1 and

x = xc,1 with a corresponding pressure impulse pc,1 upon

collapse.

pc,1 =
qc

A
δ (t − tc,1) (37)

The dynamic equations become

(pc,1 + p1 − p2v)A−κx3ẋ3 = ρAx3ẍ3 (38)

(p2v − p2)A−κ(L− x4)ẋ4 = ρA(L− x4)ẍ4 (39)

with initial velocities described by the following system

of equations where v(1,4),t−c,1
are pre-collapse velocities and

x(1,4),t+c,1
and v(1,4),t+c,1

are post-collapse conditions. Initial ve-

locities are found by infinitesimal integration about t = tc,1 and

applying conservation of momentum.

qc = ρAx3(tc,1)(v3,t+c,1
− v3,t−c,1

) (40)

v4,t+c,1
= v4,t−c,1

(41)

ρAx3(tc,1)v3,t+c,1
+ρA(L− x4(tc,1))v4,t+c,1

=

ρAxc,1v1,t−c,1
+ρA(x3(tc,1)− xc,1)v2,t−c,1

+ρA(L− x4(tc,1))v4,t−c,1

(42)

Initial positions are x(3,4),t+c,1
= x(3,4),tc,1 . Consider figure 5e.

Bubble 2 collapses at t = tc,2 and x = xc,2 which results in a

corresponding pressure impulse pc,2.

pc,2 =
qc

A
δ (t − tc,2) (43)

The dynamic equation becomes

(pc,2 + p1 − p2)A−κLẋ = ρALẍ (44)
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Modeling of Contactless Bubble-Bubble Interactions in Microchannels with Integrated Inertial Pumps 8

with the following initial conditions.

qc = ρALvt+c,2
(45)

ρAxc,2v3,t−c,2
+ρA(L− xc,2)v4,t−c,2

= ρALvt+c,2
(46)

x(tc,2) = xc,2 (47)

Post-Collapse. Condition II. Bubble 2 Collapses First.

Now, we repeat the process for condition II. Figure 5f-g

shows bubble 2 collapsing first. Bubble 2 collapses at t = tc,2
and x = xc,2 with a corresponding pressure impulse pc,2 upon

collapse. The dynamic equations become

(p1 − p1v)A−κx1ẋ1 = ρAx1ẍ1 (48)

(pc,2 + p1v − p2)A−κ(L− x2)ẋ2 = ρA(L− x2)ẍ2 (49)

with initial velocities described by the following system

of equations where v(1,4),t−c,2
are pre-collapse velocities and

x(1,4),t+c,2
and v(1,4),t+c,2

are post-collapse conditions.

v1,t+c,2
= v1,t−c,2

(50)

qc = ρA(L− x2(tc,2))(v2,t+c,2
− v2,t−c,2

) (51)

ρAx1(tc,2)v1,t+c,2
+ρA(L− x2(tc,2))v2,t+c,2

=

ρAx1(tc,2)v1,t−c,2
+ρA(xc,2 − x2(tc,2))v3,t−c,2

+ρA(L− x4(tc,2))v4,t−c,2

(52)

Initial positions are x(1,2),t+c,2
= x3,4(tc,2). Consider figure 5g.

Bubble 1 collapses at t = tc,1 and x = xc,1 which results in a

corresponding pressure impulse pc,1. The dynamic equation

becomes

(pc,1 + p1 − p2)A−κLẋ = ρALẍ (53)

with the following initial conditions.

qc = ρALvt+c,1
(54)

ρAxc,1v1,t−c,1
+ρA(L− xc,1)v2,t−c,1

= ρALvt+c,1
(55)

x(tc,1) = xc,1 (56)

V. RESULTS AND DISCUSSION

In this section, the developed one-dimensional model is ap-

plied to predict bubble and flow dynamics during contactless

bubble-bubble interaction. Three case studies varying resis-

tor placement and firing time delay are presented in figures

6-8 comparing both one-dimensional model predictions and

3D CFD results. 3D bubble and flow structures not captured

by the one-dimensional model such as post-collapse vortices,

bubble-reservoir interactions, and transverse bubble growth

are shown and discussed as fundamental limitations to the

one-dimensional model’s accuracy. We conclude this section

with a discussion on the system design space in terms of resis-

tor placement and firing time delay as well as a discussion on

proposed one-dimensional model accuracy regimes and con-

straints.

A. Case Studies

In this subsection, we apply the developed one-dimensional

and FLOW-3D CFD model to describe three distinct con-

tactless bubble-bubble interaction regimes: (1) simultaneous

firing with asymmetric resistor placement, (2) simultaneous

firing with symmetric resistor placement, and (3) delayed

firing with symmetric resistor placement. The resistor

placement is described by the normalized distance ξo where

ξo = xo/L. In these case studies, the channel cross-section

area matched our validation case (22 x 17 µ m2) and channel

lengths are all L = 500 µm. In order to accurately predict

net cumulative flow, the bubble strength qo must first be

characterized. The bubble strength is a function of fluid

heat of vaporization, resistor dimensions, and resistor firing

temperature / voltage which are not changed by varying

resistor placement and/or firing time delay. As such, the

bubble strength is a constant so long as the fluid and resistor

dimensions remain the same, as in this study. The bubble

strength was extracted from FLOW-3D CFD data of a single

resistor placed at ξo = 0.20 in a L = 500 µm channel following

the curve fitting approach of Kornilovitch et al.16 The bubble

strength was found to be qo = 4.26 × 10−10 kg·m/s and used

throughout this study.

In figure 6, two resistors are placed asymmetrically (ξo,1 =

0.20 and ξo,2 = 0.70) in a channel of length L = 500 µm.

Both resistors are fired simultaneously at t = 0 µs. As shown

in figure 6a, simultaneous firing causes little movement of

bubble interfaces x1 and x2 consistent with one-dimensional

model physics. Figure 6b shows the predicted cumulative

flow. The one-dimensional model is in excellent agreement

with FLOW-3D CFD. The one-dimensional model predicts

no flow during the pre-collapse phase as both resistors have

the same bubble strength so internal flow integrated across

the flux plane shown is 0. However, FLOW-3D CFD shows

cumulative flow during pre-collapse. Note in figure 6c-d that

the bubble requires greater than 4 µs to fully fill the channel

cross-section. As such, during realistic bubble expansion,

fluid can flow over the bubble unlike the assumption in the

one-dimensional model where the bubbles occupy the entire

channel cross-section instantaneously. Nevertheless, the

predicted cumulative flow is in excellent agreement with 3D

CFD. Figure 6e-f shows post-collapse fluid vortices that occur

when the vapor bubble fully collapses. This is the first time

such behavior has been modeled and we hypothesize that

these post-collapse 3D fluid vortexes are the mechanism for

bubble-based mixing observed in past experimental studies12.

Additionally, we observe that it takes approximately 6 µs

for the bubble to fill the 22 x 17 µ m2 channel cross-section

during its transverse growth phase. The bubble rebound

effect upon collapse shown in figure 6f agrees with previous

experimental and numerical studies16

In figure 7, two resistors are placed symmetrically (ξo,1

= 0.20 and ξo,2 = 0.80) in a channel of length L = 500 µm.

Both resistors are fired simultaneously at t = 0 µs. Similar to

before, simultaneous firing causes little movement of bubble
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Modeling of Contactless Bubble-Bubble Interactions in Microchannels with Integrated Inertial Pumps 9

interfaces x1 and x2 as shown in figure 7a. Theoretically,

the predicted cumulative flow is 0 due to symmetric resistor

placement, as the one-dimensional model shows. However,

FLOW-3D CFD results show negligible flow during pre-

collapse (t < 18 µs) and then a small spike at the point of

bubble collapse (t = 18 µs) giving rise to a nearly negligible

cumulative flow of 0.21 pL. We conjecture that the cumulative

flow spike arises from slight numerical errors which cause the

ideal resistor symmetry condition to be broken. We note that

although symmetric resistor placement does not generate zero

net flow as theoretically predicted, the net flow is significantly

smaller than typical displacements in the non-symmetric con-

ditions. In general, we suggest that 3D post-collapse vortices,

transverse bubble growth, and bubble-reservoir interactions

represent fundamental limitations to one-dimensional model

accuracy. Such differences could be accounted for in the

one-dimensional model by using experimental correlations

of the bubble strength qo with resistor placements, channel

lengths, and channel cross-sections (similar to experimental

correlations commonly done in heat transfer studies) but such

an analysis is beyond the scope of this paper and will be the

focus of future work.

In figure 8, two resistors are placed symmetrically (ξo,1

= 0.20 and ξo,2 = 0.80) in a channel of length L = 500 µm.

Now, the resistors are fired asynchronously where resistor

1 fires at t = 0 µs and resistor 2 fires at t = 10 µs. The τ
= 10 µs delay results in net cumulative flow whereas in the

simultaneous firing case no flow was expected. Later, we

show that the time delay can be used to obtain greater flow

control. Consider figure 8a-b, bubble dynamics and cumula-

tive flow were accurately predicted by the one-dimensional

model until bubble 1 collapses. After bubble 1 collapses,

the flow rebounds from reverse flow to forward flow but at

a lesser extent than predicted by CFD results. As shown

in figure 8c-d, we conjecture that it is the 3D transverse

bubble growth and post-collapse vortices that cause the

system to deviate from theoretical predictions resulting in a

faster bubble collapse time predicted by CFD than the one-

dimensional model. Specifically, the CFD model accounts for

3D transverse bubble growth which dissipates the bubble’s

mechanical momentum resulting in a faster bubble collapse

than the one-dimensional model. Since the one-dimensional

model assumes all mechanical momentum imparted by the

bubble nucleation goes into fluid flow, the vapor bubble takes

longer to collapse. Figure 8c shows flow over the second

bubble during transverse growth. Figure 8d illustrates 3D

fluid vortices which dissipate energy that the one-dimensional

model assumes goes into forward flow. Figure 8e highlights

the secondary pumping effect from CFD simulations.

B. System Design Space and 1D Model Accuracy

Here, we map the design space of contactless bubble-bubble

interaction for two resistors in a channel using the developed

one-dimensional model and discuss the one-dimensional

model’s accuracy and limitations. Figure 9a-d shows the net

cumulative flow as a function of normalized resistor 1 and 2

placement, ξo,1 and ξo,2 respectively, for two time delays and

channel lengths with the condition of zero cumulative flow

marked. For each time delay, decreasing the channel length

caused the magnitude of cumulative flow to increase. Addi-

tionally, the band of max cumulative flow resistor placement

positions became more linearly distributed in smaller channel

lengths than in the longer channel. For each channel length,

delayed resistor firing resulted in increased non-linearity of

the system as can be seen by the condition of zero cumulative

flow. In the simultaneous firing cases, the condition for zero

cumulative flow is symmetric resistor placement or ξo,2 = 1

- ξo,1. In addition to assessing the resistor placement design

space, we assess the effect of firing time delay on cumulative

flow in figure 10. Here, resistor 1 is placed at ξo,1 = 0.20 and

the placement of resistor 2 (ξo,2) and the firing time delay (τ)

is allowed to vary. Figure 10c shows that the firing time delay

can, in specific cases, cause the net flow to shift from forward

to reverse flow and thus can be used as a flow controller to

achieve a desired cumulative flow rate.

Next, we discuss the accuracy and limitations of the

one-dimensional model. An accuracy analysis was performed

using FLOW-3D CFD results as the predictive standard

upon which to compare one-dimensional model results.

Figures 9e-f, 10b-c, and 11b-c depict both FLOW-3D CFD

and one-dimensional model predicted cumulative flows for

sample points spanning different contactless bubble-bubble

interaction regimes. Consider figure 9e. The one-dimensional

model was the most accurate in predicting cumulative flow for

simultaneous resistor firing (τ = 0) with inner-channel resistor

placements (0.2L < x < 0.8L where L is the channel length).

As the resistor placement moved closer to the reservoirs,

bubble-reservoir 3D flow interactions became significant

causing the one-dimensional model’s accuracy to diverge.

These trends are also observed in figure 9f when τ = 5 µs for

delayed firing. However, with delayed resistor firing in a H =

17 µm channel, the bubble takes approximately 6 µs to fully

fill the 22 x 17 µm2 channel cross-section. Thus, fluid moves

around the second bubble during its expansion accounting

for observed net flow. This transverse growth effect is not

captured by the one-dimensional model causing accuracy to

degrade in the delayed resistor firing regime. Consider figure

10b-c. By taking sample points with increasing firing delays,

the effect of transverse bubble growth is more pronounced.

For small firing delays, the one-dimensional model fails to

accurately predict the cumulative flow. As the firing delay in-

creases, the model accuracy improves. The one-dimensional

model reaches improved accuracy beyond τ = 6 µs which

is when the bubble can be safely assumed to fully take up

the cross-section of the channel and thus transverse bubble

growth effects are minimized. Figure 11 further emphasises

the impact of transverse bubble growth effects on model

accuracy. In this case, the channel height is halved to H

= 8.5 µm upon which the vapor bubble plugs the channel

cross-section in approximately 2 µs. Here, one-dimensional

model accuracy is improved due to minimizing the impact of

transverse bubble growth effects.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
4
1
9
2
4



Modeling of Contactless Bubble-Bubble Interactions in Microchannels with Integrated Inertial Pumps 10

We conclude this section by discussing the importance

of developing reduced parameter one-dimensional models

for inertial pumps. Design space analysis provides a way

to predict resistor placements as well as firing time delays

needed to achieve a required net cumulative flow for systems

operating in the contactless bubble-bubble interaction regime.

To use inertial pumps in any application, one must first

understand and control fluid flow by characterizing the design

space. In the design space analysis examples presented in

this study, each contour plot consisted of 40 x 40 = 1600 data

points. FLOW-3D CFD required 160 core hours per sample

run to compute. As such, a single parameter space mapping

of 1600 points would require 256,000 core hours or 667 days

(with a 16 core computer) to compute in comparison to <

1 minute run time per contour plot for the one-dimensional

model. By developing accurate reduced parameter one-

dimensional models, first order systems analysis can be

rapidly performed to inform design decisions of inertial

pump based microfluidic systems operating in the contactless

bubble-bubble interaction regime.

VI. CONCLUSIONS

The present study deals with fundamental understanding

of contactless bubble-bubble interactions in inertial pump

microfludic systems through both one-dimensional mod-

eling and 3D CFD. A reduced parameter one-dimensional

model was developed and validated through 3D CFD.

One-dimensional model accuracy was demonstrated for

inner-channel resistor placements (0.2L < x < 0.8L) with

simultaneous resistor firing as well as for delayed resistor

firing with inner-channel resistor placements where the firing

delay was greater than 6 µs. Model accuracy was found to

improve with a decrease in channel height. It was suggested

that model limitations were due to 3D fluid structures such

as bubble-reservoir interactions and post-collapse vortices as

well as 3D bubble effects such as transverse bubble growth

not captured by the one-dimensional model. Delayed resistor

firing was found to enhance the non-linearity of the system

and, in specific cases, cause the net flow to shift from forward

to reverse flow. The developed one-dimensional model

provided significant time savings over CFD where a 1600

data point sweep took less than 1 minute for the 1D model

compared to 256,000 core hours for CFD. Furthermore, it

was proposed that the observed 3D post-collapse vortices

are the mechanism behind inertial pump based micro-mixing

which was experimentally demonstrated in previous work.

Cascades of thousands of inertial micro-pumps in a microflu-

idic circuit may one day be commonplace for commercial

microfluidic devices in which interaction between bubbles

will likely be unavoidable. As such, this work provides

the framework to understand contactless bubble-bubble

interactions as well as formulate a one-dimensional model to

quickly and accurately describe system performance without

computationally expensive full 3D CFD modeling. We

envision that this one-dimensional models will be an essential

tool for microfluidic designers using inertial pumps in the

contactless bubble-bubble interaction non-linear regime.
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6.jpg

FIG. 6. Contactless Bubble-bubble Interaction τ = 0, ξo,1 = 0.2, ξo,2 = 0.7, L = 500 µm. (a-b) describe one-dimensional model data overlayed

on FLOW-3D CFD data. (a) depicts the bubble edges over time and (b) shows the cumulative flow through the microchannel over time.

Resistor placement and firing delay were ξo,1 = 0.2, ξo,2 = 0.7, and τ = 0 with a one-dimensional model bubble strength of qo = 4.26 × 10−10

kg·m/s. (c-f) illustrates 3D CFD flow structures and bubble dynamics. (c) highlights both axial and transverse bubble growth. We note flow

along the axial direction until the vapor bubble plugs the channel > 4 µs after initial expansion (d). Post-collapse vortex structures are shown

in (e,f). Bubble edges are labeled x1−4 and net flow was measured at the flux plane.
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7.jpg

FIG. 7. Contactless Bubble-bubble Interaction τ = 0, ξo,1 = 0.2, ξo,2 = 0.8, L = 500 µm. (a-b) describe one-dimensional model data overlayed

on FLOW-3D CFD data. (a) depicts the bubble edges over time and (b) depicts the cumulative flow through the microchannel over time.

Resistor placement and firing delay were ξo,1 = 0.2, ξo,2 = 0.8, and τ = 0 with a one-dimensional model bubble strength of qo = 4.26 × 10−10

kg·m/s. (c-d) illustrates 3D CFD flow structures and bubble dynamics. (c) shows symmetric bubble expansion with little internal flow while (d)

shows post-collapse vortices occurring approximately 10 µs after bubble collapse. Bubble edges are labeled x1−4 and net flow was measured

at the flux plane.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
4
1
9
2
4



Modeling of Contactless Bubble-Bubble Interactions in Microchannels with Integrated Inertial Pumps 13

8.jpg

FIG. 8. Contactless Bubble-bubble Interaction τ = 10 µs, ξo,1 = 0.2, ξo,2 = 0.8, L = 500 µm. (a-b) describe one-dimensional model data

overlayed on FLOW-3D CFD data. (a) depicts the bubble edges over time and (b) depicts the cumulative flow through the microchannel over

time. Resistor placement and firing delay were ξo,1 = 0.2, ξo,2 = 0.8, and τ = 10 µs with a one-dimensional model bubble strength of qo =

4.26 × 10−10 kg·m/s. (c-f) illustrates 3D CFD flow structures and bubble dynamics. (c) shows initial bubble expansion, (d) shows the first

post-collapse vortex formation, (e) showcases the momentum imbalance between fluid legs giving rise to the secondary pumping effect, and

(f) shows the second post-collapse vortex formation. Bubble edges are labeled x1−4 and net flow was measured at the flux plane.
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9.jpg

FIG. 9. Resistor Placement Design Space Analysis using the Developed One-Dimensional Model with H = 17 µm. (a) illustrates the cumulative

flow resulting from varying xo,1 and xo,2 when τ = 0 and L = 300 µm. (b) illustrates the cumulative flow resulting from varying xo,1 and xo,2

when τ = 5 µs and L = 300 µm. (c) illustrates the cumulative flow resulting from varying xo,1 and xo,2 when τ = 0 and L = 500 µm. (d)

illustrates the cumulative flow resulting from varying xo,1 and xo,2 when τ = 5 µs and L = 500 µm. Dashed black line is the condition for no

net flow and separates forward from reverse flow. Black diamonds are points used in the accuracy analysis comparing predicted cumulative

flow from the one-dimensional model to the FLOW-3D CFD model shown in (e-f).
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10.jpg

FIG. 10. Firing Delay Design Space using the Developed One-

Dimensional Model with H = 17 µm. (a) Illustrates the cumulative

flow resulting from varying τ and ξo,2 when ξo,1 = 0.2, L = 500 µm,

and H = 17 µm. Dashed black line is the condition for no net flow and

separates forward from reverse flow. Black diamonds and triangles

are sample points used in the accuracy analysis comparing predicted

cumulative flow from the one-dimensional model to the FLOW-3D

CFD model shown in (b) and (c) respectively.

11.jpg

FIG. 11. Firing Delay Design Space using the Developed One-

Dimensional Model with H = 8.5 µm. (a) Illustrates the cumula-

tive flow resulting from varying τ and ξo,2 when ξo,1 = 0.2, L = 500

µm, and H = 8.5 µm. Dashed black line is the condition for no net

flow and separates forward from reverse flow. Black diamonds and

triangles are sample points used in the accuracy analysis comparing

predicted cumulative flow from the one-dimensional model to the

FLOW-3D CFD model shown in (b) and (c) respectively.
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Appendix A: Calculation of κ for a rectangular channel of
cross-sectional area a × b

Here, we follow the derivation for the viscous stress dissipa-

tion factor κ put forth by Kornilovitch et al.19 and apply it to

a rectangular channel cross-section. Let a and b be the rectan-

gle dimensions along the y and z axis respectively. The series

solution for the velocity profile and flow rate are given by the

following expressions26:

Vx(y,z) =
∆P

µL

16

ab

∞

∑
n,m=0

sin(p2n+1y)sin(q2m+1z)

p2n+1q2m+1

(

p2
2n+1 +q2

2m+1

) (A1)

Q =
∆P

µL

64

ab
S1(a,b)(A2)

where

p2n+1 =
π(2n+1)

a
(A3)

q2m+1 =
π(2m+1)

b
(A4)

S1(a,b) =
∞

∑
n,m=0

1

p2n+1q2m+1

(

p2
2n+1 +q2

2m+1

) . (A5)

The velocity profile can be re-written in terms of the average

velocity, 〈v〉 = Q/A.

Vx(y,z) = 〈v〉
ab

4S1

∞

∑
n,m=0

sin(p2n+1y)sin(q2m+1z)

p2n+1q2m+1

(

p2
2n+1 +q2

2m+1

)(A6)

Calculation of the viscous stress tensor and integrating over

the wall perimeter gives the total viscous force which can be

re-written as F = κ〈v〉L to agree with the one-dimensional

model. In the case of a rectangular channel cross-section26,

κ = abµ
S2(a,b)

S1(a,b)
(A7)

where

S2(a,b) =
∞

∑
n,m=0

1
(

p2
2n+1q2

2m+1

) . (A8)
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